In [1]:	<pre># Plotting import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline</pre>
	# scikit-learn library import sklearn
In []:	
In [2]:	<pre>####################################</pre>
	######################################
	# Supervised: E.g. MRI pictures from a patient conort # For every picture you already have an annotation you care about (e.g. healthy vs.cancer)
	# Unsupervised: Transcriptomics data from a cancer cohort. Maybe identify some underlying structure # E.g. finding molecular subtypes you didn't know before
In []:	

```
In [ ]: # Loading, preprocessing, cleaning data is the most crucial step
        # (~90% of the whole game boils down this)
        # Load example dataset
        from sklearn.datasets import load_iris
        iris = load_iris()
        # And inspect it:
        # Description
        print(iris.DESCR)
        # Numbers
        print(iris.data)
        # Target labels (num.)
        print(iris.target)
        # Target labels (species names)
        print(iris.target_names)
In [5]: # First things first: inspect the data
        # Ex: Anscombe's quartet
        sns.scatterplot(x = iris.data[:, 0],
```

y = iris.data[:, 1], hue = iris.target_names[iris.target]) plt.xlabel("Sepal Length [cm]") plt.ylabel("Sepal WIdth [cm]")

Out[5]: Text(0, 0.5, 'Sepal WIdth [cm]')

Out[6]: Text(0, 0.5, 'Petal Width [cm]')

Main

Goal: predict species of plant when given only the four numbers (Petal / Septal Width and Length)

First approach: "Support Vector Machine"

In [7]:	# Learning the actual classifier
	<pre># Load the model definition ("recipe") from sklearn.svm import LinearSVC</pre>
	<pre># Make an instance (object) of this classifier clf = LinearSVC()</pre>
	<pre># Train the model with our input data clf.fit(iris.data, iris.target)</pre>
	# It's trained!
Out[7]:	<pre>/home/mmf/.local/lib/python3.10/site-packages/sklearn/svm/_base.py:1206: ConvergenceWarning: Liblinear failed to co nverge, increase the number of iterations. warnings.warn(LinearSVC()</pre>
In [8]:	<pre># Let's make up two new data points as sanity check # We hope for: Model predicts the first data point to be I. setosa, # and the second one to be I. versicolor x = [[5.0, 3.5, 1.5, 0.3], [6.0, 3.0, 4, 1.5]]</pre>
	<pre>iris.target_names[clf.predict(x)]</pre>
	# Looks about right!
	# For "testing" we made up data # We cannot guarantee that the model will always have such a nice predictive power
Out[8]:	array(['setosa', 'versicolor'], dtype=' <u10')< td=""></u10')<>

```
# Train / Test Split #
        # Idea: Split our input data into a training subset (~70%), and a testing subset (~30%)
        # Train the model *only* using the training subset
        # Afterwards, use test dataset with known labels to assess model performance
        # Important: Split has to be done randomly
In [9]: # Splitting can be done with a convenience method
        data_train, data_test, labels_trains, labels_test = \
            sklearn.model_selection.train_test_split(iris.data, iris.target, train_size = 0.7)
        # Make another instance (object) of this classifier
        clf2 = LinearSVC()
        # Train it, but only using the train dataset
        clf2.fit(data_train, labels_trains)
        # Use new classifier (that has never seen the testing dataset!) to predict
        # the labels of the testing dataset
        labels_test_predicted = clf2.predict(data_test)
        # Count correctly classified data points in the testing dataset
        print("Nb. of correct predictions for the testing dataset: ", sum(labels_test_predicted == labels_test))
        print("Corresponding to Percentage of: ", sum(labels_test_predicted == labels_test) / 45)
        # We want to check which classes are classified correctly / wrongly the most often
        # => "Confusion Matrix"
        # 3x3 matrix, rows: true labels, columns: predicted labels
        sklearn.metrics.confusion_matrix(y_true = labels_test, y_pred = labels_test_predicted)
        Nb. of correct predictions for the testing dataset: 42
       /home/mmf/.local/lib/python3.10/site-packages/sklearn/svm/ base.py:1206: ConvergenceWarning: Liblinear failed to co
       nverge, increase the number of iterations.
         warnings.warn(
Out[9]: array([[19, 0, 0],
              [0, 15, 3],
              [0, 0, 8]])
```

In [10]: # Observation: If we rerun the previous cell, the results differ (slightly)
This is due to the random nature of the test/train split we do in the beginning
Idea: Maybe we do not want to train exactly one model once,
but instead train a bunch of models with slightly different subsets of the training dataset
If we train models based on different subsets,
then the models would ideally all say the same.
=> We can quantify the uncertainty of prediction.
People usually do this approach by using a model that's called DECISION TREE
An ensemble of e.g. 1000 decision trees is called (random) FOREST

In [11]:	# First, we just fit one single decision tree
In []:	# Why would we even want to use a decision tree instead of a SVM or something else? # 1.) SVMs can only deal with numbers, but a DT can work with numbers and categorical data too # 2.) A decision tree can easily be printed out, and can also easily intuitively be understood

```
# FIT A DECISION TREE #
         # Load model definition ("recipe")
        from sklearn.tree import DecisionTreeClassifier
         # Instantiate: we make a new classifier object based on that definition
         clf3 = DecisionTreeClassifier()
         # First, we need to agin split our dataset into train and test
        data_train, data_test, labels_trains, labels_test = \
            sklearn.model selection.train test split(iris.data, iris.target, train size = 0.7)
        # Train / "fit" the decision tree using the training dataset
        clf3.fit(data_train, labels_trains)
         # Predict labels for the testing dataset
        labels_test_predicted = clf3.predict(data_test)
         # Count correctly classified data points in the testing dataset
         print("Nb. of correct predictions for the testing dataset: ", sum(labels_test_predicted == labels_test))
        print("Corresponding to Percentage of: ", sum(labels_test_predicted == labels_test) / 45)
         # Confusion matrix
         sklearn.metrics.confusion_matrix(y_true = labels_test, y_pred = labels_test_predicted)
         # A better convenience function for plotting the learned tree written by myself
        fig, ax = plt.subplots(1, 1, figsize=(20,20))
         sklearn.tree.plot_tree(clf3,
                       feature_names = ["Sepal Length [cm]", "Sepal Width [cm]", "Petal Length [cm]", "Petal Width [cm]"],
                       class_names = iris.target_names,
                       filled=True.
                       fontsize=15, ax=ax);
         # -> explainable AI / ML. You cannot really do that nicely if you train more
         # complicated models, for instance neural networks
```

Nb. of correct predictions for the testing dataset: 45 Corresponding to Percentage of: 1.0

Learning a bunch of "experts" (individual decision trees, which are based on random
subsets of the training dataset), and do "vote counting"

In []: # Missing in this illustration is the idea, that you can calculate the fractions of votes
95%, 3%, 2% -- high confidence in prediction
40%, 30%, 30% -- certainty / confidence of this prediction is very low
This is the great advantage of a *ensemble* of models

```
# TRAIN A RANDOM FOREST #
         # Load model definition from the library scikit-learn
         from sklearn.ensemble import RandomForestClassifier
         # Instantiate again -- make a new object of this classifier
         # random state for reproducibility
         clf4 = RandomForestClassifier(n_estimators = 50, random_state = 0)
         # First, we need to agin split our dataset into train and test
         data_train, data_test, labels_trains, labels_test = \
             sklearn.model_selection.train_test_split(iris.data, iris.target, train_size = 0.7)
         # Fit
         # All of the used random subsets for training the individual decision trees
         # are subsets only of the training dataset!
         clf4.fit(data train, labels trains)
         # Get predicted labels for the test dataset
         # There aren't any metrics of predicitive certainty here
         labels_test_predicted = clf4.predict(data_test)
         # But there is a function in the classifier to get these estimates too
         clf4.predict_proba(data_test)
         # Some made-up data for illustration
         # Make one not-so-nice example and one nice example
         # We expect: first example should be rather inconclusive (second or third species)
         # second example should be very certain (belongs to first Iris species)
         # Seems to work nicely
         x = [[6.0, 4.0, 5.0, 1.7]]
             [5.0, 3.5, 1.5, 0.25]]
         clf4.predict_proba(x)
Out[13]: array([[0. , 0.66, 0.34],
               [1. , 0. , 0. ]])
```

Assume we have the Iris dataset again, but we don't have any labels for the data points
What we would like to do now is using ML to try to find some kind of underlying / hidden structure
in the dataset

First main concept: dimensionality reduction
Idea: we have a dataset (e.g. transcriptomics) with lots of columns ("features").
And we are trying to find some kind of lower-dimensional representation of the data

Ex: transcriptomics dataset (40'000 columns) -> PCA (2 columns: x,y)
Implicit assumption / hope: that these two columns/dimensions contain the largest chunk of information
you care about. In contrast, the remaining variation that is not captured within these two dimensions
is noise.

PCA: Simple, fast, explainable to a certain degree. # Other, more modern and complicated methods include t-sne (kinda outdated), UMAP, diffusion maps

Out[14]: [<matplotlib.lines.Line2D at 0x7f36fb277f70>]

Exemplary elbow plot might look like:

Elbow Method for selection of optimal "K" clusters

In [15]: # Need to use the fitted model in order to transform our input data into the low-dim space
that we have just learned
output = pca.transform(data_train)

Plot the first column because it carries the relevant information
and we also plot the second column (principal component) to make the
plot easier to read
sns.scatterplot(output[:,0], output[:,1])

We here have labels so we can use them to check how well the model did # Usually, IRL in an unsupervised setting we do not have these sns.scatterplot(output[:,0], output[:,1], hue=iris.target_names[labels_trains])

Indeed, the PCA has reduced a four-dimensional input dataset to its intrinsic dimensionality of 1 dimension *#* and along this one dimension (*x*-axis) the three species slit pretty nicely!

/home/mmf/.local/lib/python3.10/site-packages/seaborn/_decorators.py:36: FutureWarning: Pass the following variable s as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other ar guments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

/home/mmf/.local/lib/python3.10/site-packages/seaborn/_decorators.py:36: FutureWarning: Pass the following variable s as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other ar guments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[15]: <AxesSubplot:>

Clustering.

In [107	# Main idea: Identify groups of data points that have a very high similarity *within*, but a very low similarity # compared to all the other data points
	# There are lots of different clustering algorithms. # All of these usually have lots of parameters you can "tune" # Malicious gossip has it that: "tune" = "play around with until you find something that looks nice"
	# There are lots of "researcher degrees of freedom". Turning these parameters long enough, you can # produce basically every plot you want to.
	# Clustering even white noise without any information will nonetheless always # proudce some """clusters"""
In []:	<pre># We do a k-means clustering. # Refers to a parameter "k" number of clusters that the model should try to find. # There are ways to optimise "k" without introducing personal bias (see below). # First let's just use k=3</pre>
In [16]:	<pre># First load the defn from sklearn.cluster import KMeans</pre>
	<pre># Make model km = KMeans(n_clusters = 3)</pre>
	<pre># Fit the model km.fit(data_train)</pre>
	<pre># Let's inspect the model's results by using the labels we here have available # (IRL you don't have them in a case of unsupervised learning) # The labels the model has learned are in km.labels_ # We plot our data point in PCA space that we have learned earlier, # because in this way we may plot our 4-d dataset nicely in 2-d sns.scatterplot(output[:,0], output[:,1], hue=km.labels_, palette="Paired")</pre>
	# if we compared the indentified clusters with the species annotation (see earlier), # we indeed find a strong similarity

/home/mmf/.local/lib/python3.10/site-packages/seaborn/_decorators.py:36: FutureWarning: Pass the following variable
s as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other ar
guments without an explicit keyword will result in an error or misinterpretation.
warnings.warn(

2	152.34795176035792
3	78.85144142614601
4	57.228473214285714
5	46.44618205128205
6	39.03998724608725
7	34.883956417112294
8	30.186555194805194
9	28.024976812661023
10	26 2710770700061

