
In [1]: # Plotting
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

scikit-learn library
import sklearn

In []:

In [2]: ##############################
ML vs classical statistics
##############################

ML: Predictive accuracy is more important than analytical understanding of the
math behind the model

###
Supervised vs. unsupervised models / learning
###

Supervised: E.g. MRI pictures from a patient cohort
For every picture you already have an annotation you care about (e.g. healthy vs.cancer)

Unsupervised: Transcriptomics data from a cancer cohort. Maybe identify some underlying structure
E.g. finding molecular subtypes you didn't know before

In []:

Main http://localhost:8888/nbconvert/html/Main.ipynb?download=false

1 of 23 27.04.22, 18:29

Text(0, 0.5, 'Sepal WIdth [cm]')

In []: # Loading, preprocessing, cleaning data is the most crucial step
(~90% of the whole game boils down this)

Load example dataset
from sklearn.datasets import load_iris
iris = load_iris()

And inspect it:

Description
print(iris.DESCR)

Numbers
print(iris.data)

Target labels (num.)
print(iris.target)

Target labels (species names)
print(iris.target_names)

In [5]: # First things first: inspect the data
Ex: Anscombe's quartet

sns.scatterplot(x = iris.data[:, 0],
y = iris.data[:, 1],
hue = iris.target_names[iris.target])

plt.xlabel("Sepal Length [cm]")
plt.ylabel("Sepal WIdth [cm]")

Out[5]:

Main http://localhost:8888/nbconvert/html/Main.ipynb?download=false

2 of 23 27.04.22, 18:29

Text(0, 0.5, 'Petal Width [cm]')

In [6]: sns.scatterplot(x = iris.data[:, 2],
y = iris.data[:, 3],
hue = iris.target_names[iris.target])

plt.xlabel("Petal Length [cm]")
plt.ylabel("Petal Width [cm]")

Out[6]:

Main http://localhost:8888/nbconvert/html/Main.ipynb?download=false

3 of 23 27.04.22, 18:29

In []: ###################################
Build a (supervised) classifier
###################################

Goal: predict species of plant when given only the four numbers (Petal / Septal Width and Length)

First approach: "Support Vector Machine"

Main http://localhost:8888/nbconvert/html/Main.ipynb?download=false

4 of 23 27.04.22, 18:29

/home/mmf/.local/lib/python3.10/site-packages/sklearn/svm/_base.py:1206: ConvergenceWarning: Liblinear failed to co
nverge, increase the number of iterations.
 warnings.warn(
LinearSVC()

array(['setosa', 'versicolor'], dtype='<U10')

In [7]: # Learning the actual classifier

Load the model definition ("recipe")
from sklearn.svm import LinearSVC

Make an instance (object) of this classifier
clf = LinearSVC()

Train the model with our input data
clf.fit(iris.data, iris.target)

It's trained!

Out[7]:

In [8]: # Let's make up two new data points as sanity check
We hope for: Model predicts the first data point to be I. setosa,
and the second one to be I. versicolor
x = [[5.0, 3.5, 1.5, 0.3],

[6.0, 3.0, 4, 1.5]]

iris.target_names[clf.predict(x)]

Looks about right!

For "testing" we made up data
We cannot guarantee that the model will always have such a nice predictive power

Out[8]:

Main http://localhost:8888/nbconvert/html/Main.ipynb?download=false

5 of 23 27.04.22, 18:29

Nb. of correct predictions for the testing dataset: 42
Corresponding to Percentage of: 0.9333333333333333

/home/mmf/.local/lib/python3.10/site-packages/sklearn/svm/_base.py:1206: ConvergenceWarning: Liblinear failed to co
nverge, increase the number of iterations.
 warnings.warn(
array([[19, 0, 0],
 [0, 15, 3],
 [0, 0, 8]])

In []: ######################
Train / Test Split
######################

Idea: Split our input data into a training subset (~70%), and a testing subset (~30%)
Train the model *only* using the training subset
Afterwards, use test dataset with known labels to assess model performance

Important: Split has to be done randomly

In [9]: # Splitting can be done with a convenience method
data_train, data_test, labels_trains, labels_test = \

sklearn.model_selection.train_test_split(iris.data, iris.target, train_size = 0.7)

Make another instance (object) of this classifier
clf2 = LinearSVC()

Train it, but only using the train dataset
clf2.fit(data_train, labels_trains)

Use new classifier (that has never seen the testing dataset!) to predict
the labels of the testing dataset
labels_test_predicted = clf2.predict(data_test)

Count correctly classified data points in the testing dataset
print("Nb. of correct predictions for the testing dataset: ", sum(labels_test_predicted == labels_test))
print("Corresponding to Percentage of: ", sum(labels_test_predicted == labels_test) / 45)

We want to check which classes are classified correctly / wrongly the most often
=> "Confusion Matrix"
3x3 matrix, rows: true labels, columns: predicted labels
sklearn.metrics.confusion_matrix(y_true = labels_test, y_pred = labels_test_predicted)

Out[9]:

Main http://localhost:8888/nbconvert/html/Main.ipynb?download=false

6 of 23 27.04.22, 18:29

In [10]: # Observation: If we rerun the previous cell, the results differ (slightly)
This is due to the random nature of the test/train split we do in the beginning

Idea: Maybe we do not want to train exactly one model once,
but instead train a bunch of models with slightly different subsets of the training dataset

If we train models based on different subsets,
then the models would ideally all say the same.
=> We can quantify the uncertainty of prediction.

People usually do this approach by using a model that's called DECISION TREE
An ensemble of e.g. 1000 decision trees is called (random) FOREST

Main http://localhost:8888/nbconvert/html/Main.ipynb?download=false

7 of 23 27.04.22, 18:29

Main http://localhost:8888/nbconvert/html/Main.ipynb?download=false

8 of 23 27.04.22, 18:29

In [11]: # First, we just fit one single decision tree

In []: # Why would we even want to use a decision tree instead of a SVM or something else?
1.) SVMs can only deal with numbers, but a DT can work with numbers and categorical data too
2.) A decision tree can easily be printed out, and can also easily intuitively be understood

Main http://localhost:8888/nbconvert/html/Main.ipynb?download=false

9 of 23 27.04.22, 18:29

Nb. of correct predictions for the testing dataset: 45
Corresponding to Percentage of: 1.0

In [12]: #######################
FIT A DECISION TREE
#######################

Load model definition ("recipe")
from sklearn.tree import DecisionTreeClassifier

Instantiate: we make a new classifier object based on that definition
clf3 = DecisionTreeClassifier()

First, we need to agin split our dataset into train and test
data_train, data_test, labels_trains, labels_test = \

sklearn.model_selection.train_test_split(iris.data, iris.target, train_size = 0.7)

Train / "fit" the decision tree using the training dataset
clf3.fit(data_train, labels_trains)

Predict labels for the testing dataset
labels_test_predicted = clf3.predict(data_test)

Count correctly classified data points in the testing dataset
print("Nb. of correct predictions for the testing dataset: ", sum(labels_test_predicted == labels_test))
print("Corresponding to Percentage of: ", sum(labels_test_predicted == labels_test) / 45)

Confusion matrix
sklearn.metrics.confusion_matrix(y_true = labels_test, y_pred = labels_test_predicted)

A better convenience function for plotting the learned tree written by myself
fig, ax = plt.subplots(1, 1, figsize=(20,20))
sklearn.tree.plot_tree(clf3,

feature_names = ["Sepal Length [cm]", "Sepal Width [cm]", "Petal Length [cm]", "Petal Width [cm]"],
class_names = iris.target_names,
filled=True,
fontsize=15, ax=ax);

-> explainable AI / ML. You cannot really do that nicely if you train more
complicated models, for instance neural networks

Main http://localhost:8888/nbconvert/html/Main.ipynb?download=false

10 of 23 27.04.22, 18:29

Main http://localhost:8888/nbconvert/html/Main.ipynb?download=false

11 of 23 27.04.22, 18:29

In []: ###################
ENSEMBLE MODELS
###################

Learning a bunch of "experts" (individual decision trees, which are based on random
subsets of the training dataset), and do "vote counting"

Main http://localhost:8888/nbconvert/html/Main.ipynb?download=false

12 of 23 27.04.22, 18:29

In []: # Missing in this illustration is the idea, that you can calculate the fractions of votes
95%, 3%, 2% -- high confidence in prediction
40%, 30%, 30% -- certainty / confidence of this prediction is very low

This is the great advantage of a *ensemble* of models

Main http://localhost:8888/nbconvert/html/Main.ipynb?download=false

13 of 23 27.04.22, 18:29

array([[0. , 0.66, 0.34],
 [1. , 0. , 0.]])

In [13]: #########################
TRAIN A RANDOM FOREST
#########################

Load model definition from the library scikit-learn
from sklearn.ensemble import RandomForestClassifier

Instantiate again -- make a new object of this classifier
random_state for reproducibility
clf4 = RandomForestClassifier(n_estimators = 50, random_state = 0)

First, we need to agin split our dataset into train and test
data_train, data_test, labels_trains, labels_test = \

sklearn.model_selection.train_test_split(iris.data, iris.target, train_size = 0.7)

Fit
All of the used random subsets for training the individual decision trees
are subsets only of the training dataset!
clf4.fit(data_train, labels_trains)

Get predicted labels for the test dataset
There aren't any metrics of predicitive certainty here
labels_test_predicted = clf4.predict(data_test)

But there is a function in the classifier to get these estimates too
clf4.predict_proba(data_test)

Some made-up data for illustration
Make one not-so-nice example and one nice example
We expect: first example should be rather inconclusive (second or third species)
second example should be very certain (belongs to first Iris species)
Seems to work nicely
x = [[6.0, 4.0, 5.0, 1.7],

[5.0, 3.5, 1.5, 0.25]]
clf4.predict_proba(x)

Out[13]:

Main http://localhost:8888/nbconvert/html/Main.ipynb?download=false

14 of 23 27.04.22, 18:29

In [84]: ################
UNSUPERVISED
################

Assume we have the Iris dataset again, but we don't have any labels for the data points
What we would like to do now is using ML to try to find some kind of underlying / hidden structure
in the dataset

First main concept: dimensionality reduction
Idea: we have a dataset (e.g. transcriptomics) with lots of columns ("features").
And we are trying to find some kind of lower-dimensional representation of the data

Ex: transcriptomics dataset (40'000 columns) -> PCA (2 columns: x,y)
Implicit assumption / hope: that these two columns/dimensions contain the largest chunk of information
you care about. In contrast, the remaining variation that is not captured within these two dimensions
is noise.

PCA: Simple, fast, explainable to a certain degree.
Other, more modern and complicated methods include t-sne (kinda outdated), UMAP, diffusion maps

Main http://localhost:8888/nbconvert/html/Main.ipynb?download=false

15 of 23 27.04.22, 18:29

[<matplotlib.lines.Line2D at 0x7f36fb277f70>]

In [14]: # Load model defn
from sklearn.decomposition import PCA

Make object of this model
n_components: number of new dimensions that you want the model to *construct*
pca = PCA(n_components = 4)

Do it the right way: test and training split
First, we need to agin split our dataset into train and test
data_train, data_test, labels_trains, labels_test = \

sklearn.model_selection.train_test_split(iris.data, iris.target, train_size = 0.7)

Fit it
No labels -- because we are in an unsupervised setting, after all
pca.fit(data_train)

Elbow plot
Nice diagnostic tool to answer the question how many of the learned new components / columns
actually carry information
plt.plot(pca.explained_variance_ratio_, "o")

It seems a good assumption that only the first principal component carries significant information

Out[14]:

Main http://localhost:8888/nbconvert/html/Main.ipynb?download=false

16 of 23 27.04.22, 18:29

Exemplary elbow plot might look like:

Main http://localhost:8888/nbconvert/html/Main.ipynb?download=false

17 of 23 27.04.22, 18:29

/home/mmf/.local/lib/python3.10/site-packages/seaborn/_decorators.py:36: FutureWarning: Pass the following variable
s as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other ar
guments without an explicit keyword will result in an error or misinterpretation.
 warnings.warn(
/home/mmf/.local/lib/python3.10/site-packages/seaborn/_decorators.py:36: FutureWarning: Pass the following variable
s as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other ar
guments without an explicit keyword will result in an error or misinterpretation.
 warnings.warn(
<AxesSubplot:>

In [15]: # Need to use the fitted model in order to transform our input data into the low-dim space
that we have just learned
output = pca.transform(data_train)

Plot the first column because it carries the relevant information
and we also plot the second column (principal component) to make the
plot easier to read
sns.scatterplot(output[:,0], output[:,1])

We here have labels so we can use them to check how well the model did
Usually, IRL in an unsupervised setting we do not have these
sns.scatterplot(output[:,0], output[:,1], hue=iris.target_names[labels_trains])

Indeed, the PCA has reduced a four-dimensional input dataset to its intrinsic dimensionality of 1 dimension
and along this one dimension (x-axis) the three species slit pretty nicely!

Out[15]:

Main http://localhost:8888/nbconvert/html/Main.ipynb?download=false

18 of 23 27.04.22, 18:29

In []: ##################################
A SECOND UNSUPERVISED APPROACH
##################################

Clustering.

Main http://localhost:8888/nbconvert/html/Main.ipynb?download=false

19 of 23 27.04.22, 18:29

Main http://localhost:8888/nbconvert/html/Main.ipynb?download=false

20 of 23 27.04.22, 18:29

/home/mmf/.local/lib/python3.10/site-packages/seaborn/_decorators.py:36: FutureWarning: Pass the following variable
s as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other ar
guments without an explicit keyword will result in an error or misinterpretation.
 warnings.warn(

In [107… # Main idea: Identify groups of data points that have a very high similarity *within*, but a very low similarity
compared to all the other data points

There are lots of different clustering algorithms.
All of these usually have lots of parameters you can "tune"
Malicious gossip has it that: "tune" = "play around with until you find something that looks nice"

There are lots of "researcher degrees of freedom". Turning these parameters long enough, you can
produce basically every plot you want to.

Clustering even white noise without any information will nonetheless always
proudce some """clusters"""

In []: # We do a k-means clustering.
Refers to a parameter "k" -- number of clusters that the model should try to find.
There are ways to optimise "k" without introducing personal bias (see below).
First let's just use k=3

In [16]: # First load the defn
from sklearn.cluster import KMeans

Make model
km = KMeans(n_clusters = 3)

Fit the model
km.fit(data_train)

Let's inspect the model's results by using the labels we here have available
(IRL you don't have them in a case of unsupervised learning)
The labels the model has learned are in km.labels_
We plot our data point in PCA space that we have learned earlier,
because in this way we may plot our 4-d dataset nicely in 2-d
sns.scatterplot(output[:,0], output[:,1], hue=km.labels_, palette="Paired")

if we compared the indentified clusters with the species annotation (see earlier),
we indeed find a strong similarity

Main http://localhost:8888/nbconvert/html/Main.ipynb?download=false

21 of 23 27.04.22, 18:29

<AxesSubplot:>Out[16]:

In [17]: # There is a way of determining the optimal k
Basically, we try out k=2,k=3,.....,
and at some point we see that the clustering stops to become any more informative

for k in [2,3,4,5,6,7,8,9,10]:
km = KMeans(n_clusters = k)
km.fit(iris.data)
#Inertia: a number that quantifies the unexplained variability in the clustering
print(k, km.inertia_)
plt.scatter(k, km.inertia_)

Indeed, k=3 seems to be the optimal choice
capturing much of the information, but cutting out much of the noise

Nonetheless, even if you determine k in such an unbiased way,
there are still lots of things which you can basically choose yourself ad lib
(clustering algorithm, exact distance function used to determine point similarity, etc)
Thus, don't fool yourself.

Main http://localhost:8888/nbconvert/html/Main.ipynb?download=false

22 of 23 27.04.22, 18:29

2 152.34795176035792
3 78.85144142614601
4 57.228473214285714
5 46.44618205128205
6 39.03998724608725
7 34.883956417112294
8 30.186555194805194
9 28.024976812661023
10 26.27107797903851

Main http://localhost:8888/nbconvert/html/Main.ipynb?download=false

23 of 23 27.04.22, 18:29

